Pompe di Calore/Chiller

Speciali

Ultime recensioni

Per Roberto P. (Nichelino, Italy) il 20 Lug. 2017 :

(5/5) 

Per Giovanni A. (Grottole, Italy) il 04 Lug. 2017 :

(5/5) 

Per Giuseppe C. (Castelnovo nè Monti, Italy) il 04 Lug. 2017 :

(5/5) 

Per Maria C. (Vignola, Italy) il 22 Giu. 2017 :

(5/5) 

Per Giulio L. (Desio, Italy) il 13 Giu. 2017 :

(5/5) 

Pompe di Calore/Chiller

Le pompe di calore funzionano grazie a diversi principi fisici , ma sono classificate in base alla loro applicazione (trasmissione di calore , dispersione di calore o macchina refrigeratrice. Si immaginino 100 unità di energia termica all'interno di un pallone; questo viene compresso fino a raggiungere le dimensioni di una pallina da ping pong...

Più

Le pompe di calore funzionano grazie a diversi principi fisici , ma sono classificate in base alla loro applicazione (trasmissione di calore , dispersione di calore o macchina refrigeratrice. Si immaginino 100 unità di energia termica all'interno di un pallone; questo viene compresso fino a raggiungere le dimensioni di una pallina da ping pong eratura dell'aria all'interno è aumentata perché il lavoro compiuto per la compressione, per esempio 100 unità, ha prodotto un incremento dell'energia termica. Nel caso ideale di compressione adiabatica, cioè senza scambi di calore con l'ambiente esterno, l'energia interna alla palla è ora 200 unità. In caso contrario sarà inferiore, comunque compresa tra 100 e 200 unità.

Le pareti della pallina si riscaldano e quindi il calore incomincia a trasferirsi all'esterno. Per portare questo calore in un altro luogo, si può immaginare di muovere la pallina in una zona fredda, dove essa gradualmente varierà la sua temperatura fino a uguagliare la temperatura dell'ambiente: in questo processo si ipotizza che essa trasferisca 50 unità di energia termica.

Dopo che la pallina si è raffreddata, la si può riportare nella zona iniziale e lasciarla espandere. Dato che ha perso calore, nel momento in cui torna alle dimensioni di un pallone la sua temperatura è troppo bassa e quindi comincia ad assorbire energia termica, raffreddando l'aria circostante.

Il compressore di una pompa di calore crea proprio la differenza di pressione che permette al ciclo di funzionare (similmente alla palla che si espande e si contrae): esso aspira il fluido refrigerante attraverso l'evaporatore dove il fluido stesso evapora a bassa pressione assorbendo calore, lo comprime e lo spinge all'interno del condensatore dove il fluido condensa ad alta pressione rilasciando il calore assorbito. Dopo il condensatore, il fluido attraversa la valvola di laminazione che lo porta in condizione liquido/vapore (riduce la pressione del fluido), successivamente rientra nell'evaporatore ricominciando il ciclo. Il fluido refrigerante cambia di stato all'interno dei due scambiatori: passa nell'evaporatore da liquido a gassoso, nel condensatore da gassoso a liquido.

Rendimento

Quando si confrontano le prestazioni di pompe di calore, si evita l'utilizzo del termine "rendimento", poiché per definizione esso non può mai essere maggiore di 1. È preferibile l'utilizzo del termine "resa", che è espressa dal coifficiente di prestazione "COP", rapporto tra energia resa (calore fornito alla sorgente di interesse) ed energia consumata (di solito elettrica, richiesta ad esempio, dal compressore), usualmente indicato in fisica tecnica come coefficiente di effetto utile. Un valore del COP (coefficient of performance) pari a 3 indica che per ogni kWh di energia elettrica consumata, la pompa di calore movimenta calore pari a 3 kWh da o verso la sorgente di interesse.

In fase di raffreddamento la prestazione di una pompa di calore è descritta dall'"EER" (Energy Efficiency Ratio); la pompa di calore è solitamente più efficiente nel riscaldamento che nel raffreddamento, dato che la macchina dissipa sempre una parte di energia in calore, calore che può essere usato per il riscaldamento. Nel caso ideale di macchina di Carnot a senso inverso (le si fornisce lavoro e si ottiene calore), tra sorgenti rispettivamente a 0°C e 20°C, il COP è pari a 15 (rapporto 1:15 tra il lavoro delle resistenze elettriche e il calore ottenuto). Macchine simili sono efficienti, ma il loro costo d'impianto è elevato.

In un caso reale, con un clima mite, una pompa di calore ha un COP che va da 3 a 4 (mediamente a 10°C raggiunge 3,3, invece a −8,3°C è circa 2,3). Una classica stufetta elettrica ha un COP teorico pari a 1. In altre parole 1 joule di energia elettrica dato alla stufetta dà calore pari a 1 J, mentre dato a una pompa di calore muove più di 1 J di energia termica da un luogo freddo a uno caldo.

Per le pompe di calore che sfruttano l'aria il COP è limitato quando operano in climi molto freddi, dove c'è meno calore da trasferire all'interno di un edificio. Tipicamente il COP crolla drasticamente quando la temperatura dell'aria esterna scende sotto a −5°C/−10°C. Quando si compra una pompa di calore è importante prestare attenzione al COP, a quale intervallo di temperatura tale COP si riferisce, al costo di installazione della pompa, a quanto calore può trasferire, al rumore generato.

Il COP di una pompa di calore che sfrutta il sottosuolo (di solito l'acqua sotterranea) è maggiore di quello della pompa che sfrutta l'aria, poiché il terreno presenta una temperatura abbastanza costante durante tutto l'anno; in compenso la sua installazione è più difficoltosa e costosa.

Applicazioni tipiche delle pompe di calore sono per riscaldare le piscine e l'acqua per usi domestici.

Pompa di calore ad aria per condizionamento

Evaporatore

Ci sono due tipi di pompe di calore ad aria; la più comune è quella aria-aria, che estrae calore dall'aria e lo riversa all'interno o all'esterno di un edificio, a seconda della stagione; segue poi quella aria-acqua, che è utilizzata in ambienti con la distribuzione idrica del calore (questa seconda soluzione è comunque più rara).

Le pompe di calore ad aria possono essere:

  • progettate per lavorare in unione con una fonte supplementare di riscaldamento, come una caldaia elettrica, a gas, a gasolio;
  • già dotate di resistenza elettrica in funzione di riscaldatore supplementare;
  • bivalenti, se sono dotate di un riscaldatore a propano per innalzare la temperatura dell'aria in ingresso dall'esterno.

La fase di riscaldamento

Il calore è prelevato dall'aria esterna e portato all'interno dell'edificio.

  • Il fluido refrigerante attraversa la valvola di laminazione e diventa una miscela liquido-vapore a bassa pressione. Quindi entra nell'evaporatore, posto all'esterno, dove assorbe calore fino a diventare vapore a bassa temperatura;
  • Il vapore attraversa l'accumulatore, dove è raccolto anche ogni rimanente liquido. Quindi viene compresso, con conseguente innalzamento della temperatura;
  • Il vapore caldo giunge nel condensatore, che è il radiatore posto all'interno dell'edificio (vicino all'eventuale caldaia), e cambia di fase rilasciando il calore di liquefazione. Il liquido ottenuto ritorna alla valvola di laminazione e il ciclo si ripete.

Alla temperatura esterna di equilibrio la capacità di riscaldamento della pompa pareggia le dispersioni termiche dell'edificio, mentre sotto a essa è necessario l'apporto di una caldaia tradizionale. Si sottolinea che la pompa di calore produce aria in grandi quantità (50-60 L/s per kW) a temperature tra i 25°C e i 45°C, tendendo a operare per periodi più lunghi rispetto a una normale caldaia, che rilascia aria tra i 55°C e i 60°C.

La fase di raffreddamento

D'estate si inverte il ciclo appena descritto in modo da cambiare direzione al flusso di calore: il liquido refrigerante evapora nel radiatore interno e condensa nel radiatore esterno. L'aria interna viene inoltre deumidificata.

La fase di sbrinamento

Quando il radiatore esterno opera come evaporatore, la sua superficie risulta a bassa temperatura quando anche l'aria esterna è fredda (fase di riscaldamento nella stagione invernale). Questo comporta la formazione di ghiaccio su di esso, dovuta alla presenza di umidità nell'aria esterna, e di conseguenza una riduzione del rendimento dello scambio termico (il ghiaccio è isolante). Per disciogliere lo strato di ghiaccio la valvola reversibile inverte il ciclo e la ventola dell'evaporatore esterno si ferma, in modo da ridurre l'energia termica necessaria per lo sbrinamento. Ovviamente, mentre la macchina è in questa fase, il radiatore interno raffredda l'aria dell'edificio e quindi vi è la necessità di riscaldarla prima di immetterla in circolo.

Vi sono due metodi per stabilire quando effettuare lo sbrinamento:

  • con un sensore di temperatura esterno e un timer che inverte il ciclo a intervalli di tempo prefissati;
  • con un sistema di controllo più raffinato, che monitora il flusso d'aria, la pressione del refrigerante, la temperatura dell'aria.

Il secondo metodo, seppur più caro, è preferibile in quanto evita sbrinamenti non necessari e quindi migliora le prestazioni stagionali della macchina.

Dimensionamento

Anche se la pompa di calore può fornire tutto il calore necessario a un edificio, non è conveniente quando i carichi per il riscaldamento sono molto maggiori di quelli per il raffreddamento: la pompa, dimensionata per la stagione invernale, d'estate opererebbe in maniera intermittente, con minore COP e minore capacità di deumidificazione.

Un buon compromesso tra costi e prestazioni stagionali comporta che la pompa di calore fornisca non più del 125% del carico estivo e non più del 90% del carico invernale. Così facendo, la temperatura di equilibrio (quella a cui la pompa fornisce tutto e solo il calore che l'edificio disperde) risulta compresa tra 0°C e −5°C.



Meno

Pompe di Calore/Chiller Ci sono 5 prodotti.

Mostrando 1 - 5 di 5 articoli
Mostrando 1 - 5 di 5 articoli